
Nikita Zdvijkov
EE-2063-01: Comp Org/Microprocess
February 1, 2019

Project 1: MIPS Basics: Math, Conditionals, Loops, I/O

Objective

Assignment: write a MIPS assembly program that finds the sum of the multiples of 3 and/or
5 in the set of natural numbers less than an upper bound with two cases: 10 and 1000.

Introduction

I wrote equivalent Python and MIPS Assembly programs that solve the assigned problem
for any user-supplied natural number factors (FACTOR 1 and FACTOR 2 Python variables) and
upper bound (MAX). My programs introduce themselves in their first output to the console:

1 THIS PROGRAM WILL

2 1. TAKE THREE NATURAL NUMBERS FOR INPUT,

3 2. TEST EACH NUMBER IN THE SET OF {NATURAL NUMBERS LESS THAN THE 1ST INPUT} FOR

DIVISIBILITY BY THE 2ND INPUT - OR THE 3RD - OR BOTH.

4 3. OUTPUT THE SUM OF THE NUMBERS THAT PASSED THE TEST.

Use the summary of variables (Table 1) below to interpret the flowchart representation
of my algorithm (Figure 1) on the following page.

Table 1: Variables Summary

MIPS Python
Meaning

Register Variable

$s0 MAX upper bound
$s1 FACTOR 1 first factor
$s2 FACTOR 2 second factor
$s3 SUM running sum of multiples, outputted at end
$t0 TEST # in set to test for divisibility, iterated from 1 to MAX

Tools Used

• Python 3.7.2
• MARS (MIPS Assembler and Runtime Simulator) Release 4.5
• This report typeset with LATEX

1

Start

Define UI Strings

Print Intro

Inputs: MAX, FACTOR 1, FACTOR 2

Initialize Variables: SUM = 0, TEST = 1

TEST < MAXTEST += 1SUM += TEST Output SUM

End

TEST %

FACTOR 1

== 0

TEST %

FACTOR 2

== 0

T

F

T

F

T

F

Figure 1: Algorithm Flowchart

2

Methodology

My Python and assembly scripts (full code in Appendices) are functionally identical, i.e. as
far as I could tell, they behave exactly the same when run in their respective consoles. In
this section, I will compare the two scripts part-by-part:

— Define User-Interface Strings —

1 # --- DEFINE UI STRINGS ---

2

3 INTRO = "\nTHIS PROGRAM WILL\n 1. TAKE

THREE NATURAL NUMBERS FOR INPUT,\n 2.

TEST EACH NUMBER IN THE SET OF {NATURAL

NUMBERS LESS THAN THE 1ST INPUT} FOR

DIVISIBILITY BY THE 2ND INPUT - OR THE

3RD - OR BOTH.\n 3. OUTPUT THE SUM OF

THE NUMBERS THAT PASSED THE TEST."

4

5 # prompts for 3 inputs: MAX,

FACTOR_1, FACTOR_2

6 PROMPT_MAX = "\nENTER 1ST INPUT\n(MUST

BE A NATURAL NUMBER)\n"

7 PROMPT_FACTOR_1 = "\nENTER 2ND

INPUT\n(MUST BE A NATURAL NUMBER LESS

THAN THE 1ST INPUT)\n"

8 PROMPT_FACTOR_2 = "\nENTER 3RD

INPUT\n(MUST BE A NATURAL NUMBER LESS

THAN THE 1ST INPUT)\n"

9

10 # numerical values will be inserted

between 5 parts to form final output

11 OUT_PT_1 = "\nOUTPUT\n(SUM OF MULTIPLES

OF "

12 OUT_PT_2 = " AND "

13 OUT_PT_3 = " UNDER "

14 OUT_PT_4 = ")\n"

15 OUT_PT_5 = "\n"

1 # --- DEFINE UI STRINGS ---

2

3 .data # entries into memory

4

5 INTRO: .asciiz

"\nTHIS PROGRAM WILL\n 1. TAKE THREE

NATURAL NUMBERS FOR INPUT,\n 2. TEST

EACH NUMBER IN THE SET OF {NATURAL

NUMBERS LESS THAN THE 1ST INPUT} FOR IF

IT IS DIVISIBLE BY THE 2ND INPUT - OR

THE 3RD - OR BOTH.\n 3. OUTPUT THE SUM

OF THE NUMBERS THAT PASSED THE TEST.\n"

6

7 # prompts for 3 inputs: MAX,

FACTOR_1, FACTOR_2

8 PROMPT_MAX: .asciiz

"\nENTER 1ST INPUT\n(MUST BE A NATURAL

NUMBER)\n"

9 PROMPT_FACTOR_1: .asciiz

"\nENTER 2ND INPUT\n(MUST BE A NATURAL

NUMBER LESS THAN THE 1ST INPUT)\n"

10 PROMPT_FACTOR_2: .asciiz

"\nENTER 3RD INPUT\n(MUST BE A NATURAL

NUMBER LESS THAN THE 1ST INPUT)\n"

11

12 # numerical values will be inserted

between 5 parts to form final output

13 OUT_PT_1: .asciiz

"\nOUTPUT\n(SUM OF MULTIPLES OF "

14 OUT_PT_2: .asciiz "

AND "

15 OUT_PT_3: .asciiz "

UNDER "

16 OUT_PT_4: .asciiz

")\n"

17 OUT_PT_5: .asciiz "\n"

Remarks:

• Assembly has to use “.asciiz” to specify text encoding format – not a concern in
Python.

• Python has no equivalent to “.data”.

3

— Introduction —

1 # --- INTRO ---

2

3 print(INTRO)

1 # --- INTRO ---

2

3 .text # from here on: executable

4

5 # output INTRO string

6 la $a0, INTRO # load address of

INTRO string into syscall argument

register

7 li $v0, 4 # load print string

service code into syscall argument

register

8 syscall # print to console

9 # printing text to console

happens according to the above formula

Remarks:

• The most basic of tasks, to print a string to the console, can be done in Python with
an intuitive one-line command; it takes three instructions in assembly.

4

— Inputs —

1 # --- INPUTS ---

2

3 MAX = int(input(PROMPT_MAX))

4 FACTOR_1 = int(input(PROMPT_FACTOR_1))

5 FACTOR_2 = int(input(PROMPT_FACTOR_2))

1 # --- INPUTS ---

2

3 # output PROMPT_MAX string

4 la $a0, PROMPT_MAX

5 li $v0, 4

6 syscall

7 # get 1st input: MAX

8 li $v0, 5 # load read int

service code into syscall argument

register

9 syscall # get console input

10 move $s0, $v0 # move from

syscall output register to register

associated with MAX variable for future

use

11 # getting input from console

happens according to the above formula

12

13 # output PROMPT_FACTOR_1 string

14 la $a0, PROMPT_FACTOR_1

15 li $v0, 4

16 syscall

17 # get 2nd input: FACTOR_1

18 li $v0, 5

19 syscall

20 move $s1, $v0

21

22 # output PROMPT_FACTOR_2 string

23 la $a0, PROMPT_FACTOR_2

24 li $v0, 4

25 syscall

26 # get 3rd input: FACTOR_2

27 li $v0, 5

28 syscall

29 move $s2, $v0

Remarks:

• Each line of Python code in this part gets expanded to six lines of assembly code: it
takes MIPS three commands to print the prompt string to the console and another
three to accept user input.

5

— Initialize Variables —

1 # --- INITIALIZE VARS ---

2

3 SUM = 0 # running SUM of multiples of

FACTOR_1 and/or FACTOR_2 - initialize

to zero

4 TEST = 1 # number in the set to TEST

for divisibility FACTOR_1 and/or

FACTOR_2 - initialize to first natural

number

1 # --- INITIALIZE VARS ---

2

3 li $s3, 0 # SUM register should

already be at zero - this is just in

case

4 li $t0, 1 # value of 1 loaded

into register corresponding with var

TEST

Remarks:

• Clear correspondence between Python and assembly in this part.

6

— Loop —

1 # --- LOOP ---

2

3 while TEST < MAX: # go

through the set from 1 --> largest

natural number less than MAX

4 if TEST % FACTOR_1 == 0: # if

TEST is divisible by FACTOR_1

5 SUM += TEST # then

add TEST to running SUM

6 elif TEST % FACTOR_2 == 0: # if

TEST is divisible by FACTOR_2 but not

FACTOR_1

7 SUM += TEST # then

add TEST to running SUM

8 TEST += 1 # go to

next number in the set

1 # --- LOOP ---

2

3 while:

4 bge $t0, $s0, exit # if TEST is

greater than or equal to MAX ...

5 # ... then jump to instruction

in OUTPUT & FINISH part of program

6 # if TEST is less than MAX,

then continue on with loop

7

8 div $t0, $s1 # divide TEST by

FACTOR_1 and store remainder in hi

register

9 mfhi $t1 # move remainder from

hi register to a useable one: $t1

10

11 beq $t1, $zero, sum # if the

remainder is equal to zero, then branch

to the sum address

12 # ... this means skipping the

test for divisibility by FACTOR_2

13 div $t0, $s2 # if remainder is

not equal to zero the program will end

up here ...

14 # ... to test for divisibility

by FACTOR_2

15 mfhi $t1 # again, move

remainder to useable register

16 bne $t1, $zero, increment #

another branch that skips adding TEST

to SUM if the remainder is not equal to

zero

17 sum:

18 add $s3, $s3, $t0 # SUM += TEST

(this is done if TEST is a multiple of

FACTOR_1 and/or FACTOR_2

19 increment:

20 addi $t0, $t0, 1 # TEST += 1

(iterate TEST

21

22 j while # jump back to the

header of the while loop

Remarks:

• Python’s simple syntax made it easy to conceptualize and troubleshoot the loop at the
heart of this program.

7

— Output & Finish —

1 # --- OUTPUT & FINISH ---

2

3 print(OUT_PT_1, FACTOR_1, OUT_PT_2,

FACTOR_2, OUT_PT_3, MAX, OUT_PT_4, SUM,

OUT_PT_5, sep = ’’)

1 # --- OUTPUT & FINISH ---

2

3 # output OUT_PT_1 string

4 exit: # move on to output & finish section if

condition for re/entering while loop not met

5 la $a0, OUT_PT_1

6 li $v0, 4

7 syscall

8 # output SUM value

9 la $a0, ($s1) # load sum into syscall

argument

10 li $v0, 1 # load print int service code

into syscall argument register

11 syscall # perform the output

12 # the process for outputting a number to

console is a little different from outputting a

string

13

14 # output OUT_PT_2 string

15 la $a0, OUT_PT_2

16 li $v0, 4

17 syscall

18 # output SUM value

19 la $a0, ($s2)

20 li $v0, 1

21 syscall

22

23 # output OUT string

24 la $a0, OUT_PT_3

25 li $v0, 4

26 syscall

27 # output SUM value

28 la $a0, ($s0)

29 li $v0, 1

30 syscall

31

32 # output OUT string

33 la $a0, OUT_PT_4

34 li $v0, 4

35 syscall

36 # output SUM value

37 la $a0, ($s3)

38 li $v0, 1

39 syscall

40

41 # output OUT string

42 la $a0, OUT_PT_5

43 li $v0, 4

44 syscall

45

46 # finish

47 li $v0, 10 # load exit service code into

syscall argument register

48 syscall # exit program

Remarks:

• In assembly, instructions for outputting a string and integer are different.
• Assembly requires a syscall to properly exit the program.
• This part exemplifies how much more concise high level languages can be.

8

Results

1 $ python3 proj1.py

2
3 THIS PROGRAM WILL

4 1. TAKE THREE NUMBERS FOR INPUT,

5 2. TEST EACH NUMBER IN THE SET OF {NATURAL NUMBERS LESS THAN THE 1ST INPUT} FOR IF IT

IS DIVISIBLE BY THE 2ND INPUT - OR THE 3RD - OR BOTH.

6 3. OUTPUT THE SUM OF THE NUMBERS THAT PASSED THE TEST.

7
8 ENTER 1ST INPUT

9 (MUST BE A NATURAL NUMBER)

10 1000

11
12 ENTER 2ND INPUT

13 (MUST BE A NATURAL NUMBER LESS THAN THE 1ST INPUT)

14 3

15
16 ENTER 3RD INPUT

17 (MUST BE A NATURAL NUMBER LESS THAN THE 1ST INPUT)

18 5

19
20 OUTPUT

21 (SUM OF MULTIPLES OF 3 AND 5 UNDER 1000)

22 233168

Figure 2: Python script console end state, MAX = 1000, SUM = 233168

1 $ python3 proj1.py

2
3 THIS PROGRAM WILL

4 1. TAKE THREE NATURAL NUMBERS FOR INPUT,

5 2. TEST EACH NUMBER IN THE SET OF {NATURAL NUMBERS LESS THAN THE 1ST INPUT} FOR

DIVISIBILITY BY THE 2ND INPUT - OR THE 3RD - OR BOTH.

6 3. OUTPUT THE SUM OF THE NUMBERS THAT PASSED THE TEST.

7
8 ENTER 1ST INPUT

9 (MUST BE A NATURAL NUMBER)

10 10

11
12 ENTER 2ND INPUT

13 (MUST BE A NATURAL NUMBER LESS THAN THE 1ST INPUT)

14 3

15
16 ENTER 3RD INPUT

17 (MUST BE A NATURAL NUMBER LESS THAN THE 1ST INPUT)

18 5

19
20 OUTPUT

9

21 (SUM OF MULTIPLES OF 3 AND 5 UNDER 10)

22 23

Figure 3: Python script console end state, MAX = 10, SUM = 23

1
2 THIS PROGRAM WILL

3 1. TAKE THREE NUMBERS FOR INPUT,

4 2. TEST EACH NUMBER IN THE SET OF {NATURAL NUMBERS LESS THAN THE 1ST INPUT} FOR IF IT

IS DIVISIBLE BY THE 2ND INPUT - OR THE 3RD - OR BOTH.

5 3. OUTPUT THE SUM OF THE NUMBERS THAT PASSED THE TEST.

6
7 ENTER 1ST INPUT

8 (MUST BE A POSITIVE NUMBER)

9 1000

10
11 ENTER 2ND INPUT

12 (MUST BE A NATURAL NUMBER LESS THAN THE 1ST INPUT)

13 3

14
15 ENTER 3RD INPUT

16 (MUST BE A NATURAL NUMBER LESS THAN THE 1ST INPUT)

17 5

18
19 OUTPUT

20 (SUM OF MULTIPLES OF 3 AND 5 UNDER 1000)

21 233168

22
23 -- program is finished running --

Figure 4: Assembly script console end state, MAX = 1000, SUM = 233168

1
2 THIS PROGRAM WILL

3 1. TAKE THREE NATURAL NUMBERS FOR INPUT,

4 2. TEST EACH NUMBER IN THE SET OF {NATURAL NUMBERS LESS THAN THE 1ST INPUT} FOR IF IT

IS DIVISIBLE BY THE 2ND INPUT - OR THE 3RD - OR BOTH.

5 3. OUTPUT THE SUM OF THE NUMBERS THAT PASSED THE TEST.

6
7 ENTER 1ST INPUT

8 (MUST BE A NATURAL NUMBER)

9 10

10
11 ENTER 2ND INPUT

10

12 (MUST BE A NATURAL NUMBER LESS THAN THE 1ST INPUT)

13 3

14
15 ENTER 3RD INPUT

16 (MUST BE A NATURAL NUMBER LESS THAN THE 1ST INPUT)

17 5

18
19 OUTPUT

20 (SUM OF MULTIPLES OF 3 AND 5 UNDER 10)

21 23

22
23 -- program is finished running --

Figure 5: Python script console end state, MAX = 10, SUM = 23

11

Figure 6: MIPS registers end state, MAX = 1000, SUM = 233168

12

Figure 7: MIPS registers end state, MAX = 10, SUM = 23

13

Appendix I: Full Python Script

1 # --- DEFINE UI STRINGS ---

2

3 INTRO = "\nTHIS PROGRAM WILL\n 1. TAKE THREE NATURAL NUMBERS FOR INPUT,\n 2. TEST EACH

NUMBER IN THE SET OF {NATURAL NUMBERS LESS THAN THE 1ST INPUT} FOR DIVISIBILITY BY THE

2ND INPUT - OR THE 3RD - OR BOTH.\n 3. OUTPUT THE SUM OF THE NUMBERS THAT PASSED THE

TEST."

4

5 # prompts for 3 inputs: MAX, FACTOR_1, FACTOR_2

6 PROMPT_MAX = "\nENTER 1ST INPUT\n(MUST BE A NATURAL NUMBER)\n"

7 PROMPT_FACTOR_1 = "\nENTER 2ND INPUT\n(MUST BE A NATURAL NUMBER LESS THAN THE 1ST

INPUT)\n"

8 PROMPT_FACTOR_2 = "\nENTER 3RD INPUT\n(MUST BE A NATURAL NUMBER LESS THAN THE 1ST

INPUT)\n"

9

10 # numerical values will be inserted between 5 parts to form final output

11 OUT_PT_1 = "\nOUTPUT\n(SUM OF MULTIPLES OF "

12 OUT_PT_2 = " AND "

13 OUT_PT_3 = " UNDER "

14 OUT_PT_4 = ")\n"

15 OUT_PT_5 = "\n"

16

17 # --- INTRO ---

18

19 print(INTRO)

20

21 # --- INPUTS ---

22

23 MAX = int(input(PROMPT_MAX))

24 FACTOR_1 = int(input(PROMPT_FACTOR_1))

25 FACTOR_2 = int(input(PROMPT_FACTOR_2))

26

27 # --- INITIALIZE VARS ---

28

29 SUM = 0 # running SUM of multiples of FACTOR_1 and/or FACTOR_2 - initialize to zero

30 TEST = 1 # number in the set to TEST for divisibility FACTOR_1 and/or FACTOR_2 -

initialize to first natural number

31

32 # --- LOOP ---

33

34 while TEST < MAX: # go through the set from 1 --> largest natural number

less than MAX

35 if TEST % FACTOR_1 == 0: # if TEST is divisible by FACTOR_1

36 SUM += TEST # then add TEST to running SUM

37 elif TEST % FACTOR_2 == 0: # if TEST is divisible by FACTOR_2 but not FACTOR_1

38 SUM += TEST # then add TEST to running SUM

39 TEST += 1 # go to next number in the set

40

41 # --- OUTPUT & FINISH ---

42

43 print(OUT_PT_1, FACTOR_1, OUT_PT_2, FACTOR_2, OUT_PT_3, MAX, OUT_PT_4, SUM, OUT_PT_5,

sep = ’’)

14

Appendix II: Full MIPS Assembly Script

1 # --- DEFINE UI STRINGS ---

2

3 .data # entries into memory

4

5 INTRO: .asciiz "\nTHIS PROGRAM WILL\n 1. TAKE THREE NATURAL

NUMBERS FOR INPUT,\n 2. TEST EACH NUMBER IN THE SET OF {NATURAL NUMBERS LESS THAN THE

1ST INPUT} FOR IF IT IS DIVISIBLE BY THE 2ND INPUT - OR THE 3RD - OR BOTH.\n 3. OUTPUT

THE SUM OF THE NUMBERS THAT PASSED THE TEST.\n"

6

7 # prompts for 3 inputs: MAX, FACTOR_1, FACTOR_2

8 PROMPT_MAX: .asciiz "\nENTER 1ST INPUT\n(MUST BE A NATURAL NUMBER)\n"

9 PROMPT_FACTOR_1: .asciiz "\nENTER 2ND INPUT\n(MUST BE A NATURAL NUMBER LESS

THAN THE 1ST INPUT)\n"

10 PROMPT_FACTOR_2: .asciiz "\nENTER 3RD INPUT\n(MUST BE A NATURAL NUMBER LESS

THAN THE 1ST INPUT)\n"

11

12 # numerical values will be inserted between 5 parts to form final output

13 OUT_PT_1: .asciiz "\nOUTPUT\n(SUM OF MULTIPLES OF "

14 OUT_PT_2: .asciiz " AND "

15 OUT_PT_3: .asciiz " UNDER "

16 OUT_PT_4: .asciiz ")\n"

17 OUT_PT_5: .asciiz "\n"

18

19 # --- INTRO ---

20

21 .text # from here on: executable

22

23 # output INTRO string

24 la $a0, INTRO # load address of INTRO string into syscall argument register

25 li $v0, 4 # load print string service code into syscall argument register

26 syscall # print to console

27 # printing text to console happens according to the above formula

28

29 # --- INPUTS ---

30

31 # output PROMPT_MAX string

32 la $a0, PROMPT_MAX

33 li $v0, 4

34 syscall

35 # get 1st input: MAX

36 li $v0, 5 # load read int service code into syscall argument register

37 syscall # get console input

38 move $s0, $v0 # move from syscall output register to register associated with

MAX variable for future use

39 # getting input from console happens according to the above formula

40

41 # output PROMPT_FACTOR_1 string

42 la $a0, PROMPT_FACTOR_1

43 li $v0, 4

44 syscall

45 # get 2nd input: FACTOR_1

46 li $v0, 5

15

47 syscall

48 move $s1, $v0

49

50 # output PROMPT_FACTOR_2 string

51 la $a0, PROMPT_FACTOR_2

52 li $v0, 4

53 syscall

54 # get 3rd input: FACTOR_2

55 li $v0, 5

56 syscall

57 move $s2, $v0

58

59 # --- INITIALIZE VARS ---

60

61 li $s3, 0 # SUM register should already be at zero - this is just in case

62 li $t0, 1 # value of 1 loaded into register corresponding with var TEST

63

64 # --- LOOP ---

65

66 while:

67 bge $t0, $s0, exit # if TEST is greater than or equal to MAX ...

68 # ... then jump to instruction in OUTPUT & FINISH part of program

69 # if TEST is less than MAX, then continue on with loop

70

71 div $t0, $s1 # divide TEST by FACTOR_1 and store remainder in hi register

72 mfhi $t1 # move remainder from hi register to a useable one: $t1

73

74 beq $t1, $zero, sum # if the remainder is equal to zero, then branch to the sum

address

75 # ... this means skipping the test for divisibility by FACTOR_2

76 div $t0, $s2 # if remainder is not equal to zero the program will end up here ...

77 # ... to test for divisibility by FACTOR_2

78 mfhi $t1 # again, move remainder to useable register

79 bne $t1, $zero, increment # another branch that skips adding TEST to SUM if the

remainder is not equal to zero

80 sum:

81 add $s3, $s3, $t0 # SUM += TEST (this is done if TEST is a multiple of FACTOR_1

and/or FACTOR_2

82 increment:

83 addi $t0, $t0, 1 # TEST += 1 (iterate TEST

84

85 j while # jump back to the header of the while loop

86

87 # --- OUTPUT & FINISH ---

88

89 # output OUT_PT_1 string

90 exit: # move on to output & finish section if condition for re/entering while loop not

met

91 la $a0, OUT_PT_1

92 li $v0, 4

93 syscall

94 # output SUM value

95 la $a0, ($s1) # load sum into syscall argument

96 li $v0, 1 # load print int service code into syscall argument register

16

97 syscall # perform the output

98 # the process for outputting a number to console is a little different from

outputting a string

99

100 # output OUT_PT_2 string

101 la $a0, OUT_PT_2

102 li $v0, 4

103 syscall

104 # output SUM value

105 la $a0, ($s2)

106 li $v0, 1

107 syscall

108

109 # output OUT string

110 la $a0, OUT_PT_3

111 li $v0, 4

112 syscall

113 # output SUM value

114 la $a0, ($s0)

115 li $v0, 1

116 syscall

117

118 # output OUT string

119 la $a0, OUT_PT_4

120 li $v0, 4

121 syscall

122 # output SUM value

123 la $a0, ($s3)

124 li $v0, 1

125 syscall

126

127 # output OUT string

128 la $a0, OUT_PT_5

129 li $v0, 4

130 syscall

131

132 # finish

133 li $v0, 10 # load exit service code into syscall argument register

134 syscall # exit program

17

